
OpenET Client
Release 0.1

Nick Santos

May 26, 2023

CONTENTS:

1 Installation 3

2 Getting Started 5

3 Using the Client with the OpenET Geodatabase API 7
3.1 Geodatabase API Access Class and Methods . 8

4 Using the Client with the OpenET Raster API 11
4.1 Examples . 11
4.2 Raster API Class and Methods . 12

5 Raster Timeseries Data 15

6 Sending Your Own Requests to the API 19
6.1 Client Class and Methods . 19

7 The Data Download Cache 21

8 Indices and tables 23

Python Module Index 25

Index 27

i

ii

OpenET Client, Release 0.1

Caution: This project is not affiliated with OpenET and has been developed independently.

CONTENTS: 1

OpenET Client, Release 0.1

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

python -m pip install openet-client

If you want support for spatial operations that help with wrapping the geodatabase API, also run

python -m pip install openet-client[spatial]

This will attempt to install geopandas and fiona, which are required for spatial processing. These packages may have
trouble (especially on Windows) due to external dependencies. We recommend using a conda environment and the
conda packages to simplify that install. In that case, simply use conda to install geopandas to install the necessary
dependencies instead of running the above command.

You may also download the repository and run python setup.py install to use the package, replacing python
with the full path to your python interpreter, if necessary.

3

OpenET Client, Release 0.1

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

The OpenET Client Python package provides convenience functions to make it easier to request and retrieve data from
OpenET’s API, such as tools to match your spatial data to OpenET’s and send requests for raster data and manage the
download process.

Core functionality of the package includes:

• Automatic matching of any geopandas-compatible dataset (including Shapefiles) with OpenET geodatabase API
fields to make downloading timeseries data easier

• Fully automated retrieval and attachment of ET values back to input datasets - provide the dataset and API
parameters and receive the results back as a field on the input data

• Send multiple requests to the raster API and have the client manage waiting for and downloading the data when
it’s ready, or have your code continue doing other work and manually trigger a download check later on.

Note: Using this client still requires knowing some information about the OpenET API itself, including the API
endpoints you wish to use and the parameters you want to send to the API endpoints. We recommend familiarizing
yourself with the documentation for the OpenET API itself to use this Python package. While the API documentation
expects you to handle everything related to sending requests to the API and understanding the response, this package
handles those tasks for you, but you need to know which requests you want to send.

The OpenET API’s documentation can be found at https://open-et.github.io/docs/build/html/index.html

5

https://open-et.github.io/docs/build/html/index.html
https://open-et.github.io/docs/build/html/index.html

OpenET Client, Release 0.1

6 Chapter 2. Getting Started

CHAPTER

THREE

USING THE CLIENT WITH THE OPENET GEODATABASE API

The geodatabase API is supported, including functions that allow pulling ET data for spatial objects.

import os
import geopandas
import openet_client

features = "PATH TO YOUR SPATIAL DATA" # must be a format geopandas supports, which is␣
→˓most spatial data
df = geopandas.read_file(features)

client = openet_client.OpenETClient()
client.token = os.environ["OPENET_TOKEN"]
result = client.geodatabase.get_et_for_features(params={

"aggregation": "mean",
"feature_collection_name": "CA",
"model": "ensemble_mean",
"variable": "et",
"start_date": 2018,
"end_date": 2018

},
features=df,
feature_type=openet_client.geodatabase.FEATURE_TYPE_GEOPANDAS,
output_field="et_2018_mean_ensemble_mean",
endpoint="timeseries/features/stats/annual"

)

More documentation for this portion of the API will be forthcoming, but note that, like the raster API, you provide a
set of parameters that will be sent directly to OpenET based on the endpoint. The function get_et_for_features takes
many additional parameters that indicate what kind of data you’re providing as an input, in this case a geopandas data
frame. You also can provide different geodatabase feature endpoints.

This function then calculates the centroid of each feature, finds the fields in OpenET that are associated with those
centroids, then downloads the ET data for those fields based on the params you provide. It attaches the ET to a data
frame as a new field with the name specified in output_field. Note that for large features, it does not currently retrieve
ET for multiple fields and aggregate them to the larger area. For that functionality, use the raster functionality.

This function also caches the field IDs for the features to avoid future lookups that use API quota. Rerunning the same
features with different params will run significantly faster and use significantly fewer API requests behind the scenes.

7

OpenET Client, Release 0.1

3.1 Geodatabase API Access Class and Methods

class openet_client.Geodatabase(client)

feature_ids_list(params=None)

The base OpenET Method - sends the supplied params to meta-
data/openet/region_of_interest/feature_ids_list and returns the requests.Response object

Parameters
params –

Returns

get_et_for_features(params, features, feature_type, output_field=None, geometry_field='geometry',
endpoint='timeseries/features/stats/annual', wait_time=5000, batch_size=40,
return_type='joined', join_type='outer')

Takes one of multiple data formats (user specified, we’re not inspecting it - options are geopandas,
geojson) and gets its coordinate values, then gets the field IDs in OpenET for the coordinate pair,
retrieves the ET data and returns it as a geopandas data frame with the results in the specified
output_field

Parameters

• params –

• features –

• endpoint – which features endpoint should it use?

• return_type – How should we return the data? Options are “raw” to return just the JSON
from OpenET, “list” to return a list of dictionaries with the OpenET data, “pandas” to return
a pandas

data frame of the results, or “joined” to return the

data joined back to the input data. “joined” is the default.

• join_type – When merging results back in, what type of join should we use? Defaults
to “outer” so that records are retained even if no results come back for them. This is also
useful behavior when we have multiple timeseries records, such as for monthly results, but
it can duplicate input records (not always desirable). To change the behavior, change this
to any value supported by pandas.merge or change the return_type so no join occurs.

Returns

get_et_for_openet_feature_list(feature_ids, endpoint, params, wait_time=5000, batch_size=40)

Retrieve ET for a list of OpenET Feature IDs and return the raw JSON data. To handle retrieving
for spatial data you already have, use get_et_for_features instead.

Parameters

• feature_ids – a list of strings containing OpenET feature IDs

• endpoint – The OpenET endpoint to run the request against. No default

• params – The parameters as specified in the OpenET documentation (https://open-et.
github.io)

8 Chapter 3. Using the Client with the OpenET Geodatabase API

https://open-et.github.io
https://open-et.github.io

OpenET Client, Release 0.1

• wait_time – How long to wait between requests to avoid hitting a rate limit. Defaults to
5 seconds

• batch_size – How large of batches should we use by default? Defaults to 40

Returns
A list of dictionaries as returned from JSON by the OpenET API

get_feature_ids(features, field=None, wait_time=5000)

An internal method used to get a list of coordinate pairs and return the feature ID. Values come
back as a dictionary where the input item in the list (coordinate pair shown as DD Longitude space
DD latitude) is a dictionary key and the value is the OpenET featureID

Parameters

• features –

• field – when field is defined, features will be a pandas data frame with a field that has the
coordinate values to use. In that case, results will be joined back to the data frame as the
field openet_feature_id.

• wait_time – how long in ms should we wait between subsequent requests?

Returns

3.1. Geodatabase API Access Class and Methods 9

OpenET Client, Release 0.1

10 Chapter 3. Using the Client with the OpenET Geodatabase API

CHAPTER

FOUR

USING THE CLIENT WITH THE OPENET RASTER API

4.1 Examples

One common need is issuing a raster export command and then waiting to proceed until the image is available and
downloaded to the current machine. To do that:

Warning: The current approach will make all exported rasters public in order to be able to automatically download
them - do not proceed to use this code if that isn’t acceptable.

import openet_client

arguments are in the form of a dictionary with keys and
values conforming to https://open-et.github.io/docs/build/html/ras_export.html
In the future, geometry may accept OGR or GEOS objects and create the string itself
arguments = {

'start_date': '2016-01-01',
'end_date': '2016-03-20',
'geometry': '-120.72612533471566,37.553211935016215,-120.72612533471566,37.

→˓474782294423676,-120.59703597924691,37.474782294423676,-120.59703597924691,37.
→˓553211935016215',
'filename_suffix': 'client_test',
'variable': 'et',
'model': 'ensemble',
'units': 'metric'

}

client = openet_client.OpenETClient("your_open_et_token_value_here")

note that the path matches OpenET's raster export endpoint
client.raster.export(arguments, synchronous=True) # synchronous says to wait for it to␣
→˓download before proceeding
print(client.raster.downloaded_raster_paths) # get the paths to the downloaded rasters␣
→˓(will be a list, even for a single raster)

11

OpenET Client, Release 0.1

4.1.1 Batching it

You may also want to queue up multiple rasters, then wait to download them all. To do that, run the raster.export
commands with synchronous=False (the default), then issue a call to wait_for_rasters

import openet_client

client = openet_client.OpenETClient("your_open_et_token_value_here")
arguments1 = {} # some set of arguments, similar to the first example
arguments2 = {} # same
client.raster.export(arguments1)
client.raster.export(arguments2)
client.raster.wait_for_rasters() # this will keep running until all rasters are␣
→˓downloaded - it will wait up to a day by default, but that's configurable by providing␣
→˓a `max_time` argument in seconds
print(client.raster.downloaded_raster_paths) # a list with all downloaded rasters
or
rasters = client.raster.registry.values() # get all the Raster objects including remote␣
→˓URLs and local paths

Doing work while you wait + manual control

You might also not want to wait around for the rasters to export, but still have control over the process. Here’s how to
manually control the flow

import openet_client

client = openet_client.OpenETClient("your_open_et_token_value_here")
arguments = {} # some set of arguments, similar to the first example
my_raster = client.raster.export(arguments)

... any other code you like here - the OpenET API will do its work and make the raster␣
→˓ready - or not, depending on your place in their queue ...

client.raster.check_statuses() # check the API's all_files endpoint to see which rasters␣
→˓are ready
if my_raster.status == openet_client.raster.STATUS_AVAILABLE # check that the raster we␣
→˓want is now ready

client.raster.download_available_rasters() # try to download the ones that are␣
→˓ready and not yet downloaded (from this session)

4.2 Raster API Class and Methods

class openet_client.raster.Raster(request_result)
Internal object for managing raster exports - tracks current status, the remote URL and the local file path once it
exists. Users of this package shouldn’t need to instantiate this object directly in most cases.

download_file(retry_interval=20, max_wait=600)

Attempts to download a raster, assuming it’s ready for download. Will make multiple attempts
over a few minutes because sometimes it takes a while for the permissions to propagate, so the

12 Chapter 4. Using the Client with the OpenET Raster API

OpenET Client, Release 0.1

first few responses may give a 403 error. We then have a timeout (max_wait) where if we exceed
that value, we exit anyway without downloading.

Downloads the file to a tempfile path - the user may move the file after that if they wish.

Parameters

• retry_interval – time in seconds between repeated attempts

• max_wait – How long, in seconds should we wait for the correct permissions before stop-
ping attempts to download.

Returns

class openet_client.raster.RasterManager(client)
The manager that becomes the .raster attribute on the OpenETClient object. Handles submitting raster export
requests and polling for completed exports.

As constructed, could slow down if it handles many thousands of raster exports, or if the all_files OpenET
endpoint displays lots of files as options.

Generally speaking, you won’t create this object yourself, but you can set client.raster.wait_interval to the length
of time, in seconds, that the manager should wait between polling the all_files endpoint for new exports when
waiting for new rasters.

property available_rasters

Which rasters have we marked as ready to download, but haven’t yet been retrieved?

Returns

check_statuses(rasters=None)

Updates the status information on each raster only - does not attempt to download them.

Parameters
rasters – the list of rasters to update the status of - if not provided, defaults to all rasters
that are queued and not downloaded

Returns
None

download_available_rasters()

Attempts to download all available rasters individually

Returns

export(params=None, synchronous=False, public=True, transform=False)

Handles the raster/export endpoint for OpenET. Optionally waits for the raster to be exported and
downloaded before proceeding. See documentation examples for usage details.

Parameters

• params – A dictionary of arguments with keys matching the raster/export endpoints param-
eters and values matching the requirements for the values of those keys. If the “geometry”
key of this value is a GEOS or an OGR object with a .coords attribute, then the correct

4.2. Raster API Class and Methods 13

OpenET Client, Release 0.1

geometry string to send to the API will be composed for you. Otherwise, it is your respon-
sibility to match the values with the API’s requirements.

• synchronous – Whether or not to wait for the raster to export and be downloaded before
exiting this function and proceeding

• public – Whether or not to make the raster public - at this point, keeping this as True is
required for all the features of this package to work, but if you just want to use the package
to submit a bunch of raster jobs, but not to download those rasters, then you may set this
to False.

• transform – If a GEOS or OGR object with transform and coords attributes is passed
in as part of params[“geography”], such as an object from GeoDjango, then you can op-
tionally specify that this function handle a simple transformation to WGS84 (EPSG 4326)
for you. For more complicated transformations or datum transformations, it may be best to
handle the transformation before running this function. Setting it to False doesn’t control
usage of a GEOS/OGR object is used, only if its coordinates are transformed first.

Returns
Raster object - when synchronous, the local_file attribute will have the path to the downloaded
raster on disk - otherwise it will have the status of the raster

property queued_rasters

Which rasters are we still waiting for?

Returns

wait_for_rasters(uuid=None, max_time=86400)

When we want to just wait until the rasters are ready, we call this method, which polls the all_files
endpoint at set intervals and checks which rasters are done.

Then updates the statuses on individual rasters and calls the download functions for the individual
rasters and time some are ready to download, but won’t exit until all rasters are available and have
had at least one download attempt.

It is recommended to use this after queueing a batch of rasters for running so that they may be
exporting all at the same time before waiting - it will wait until all are exported before returning
flow control to the calling function. Running this after each raster export will result in much longer
runtimes (because exports will not run in parallel).

Parameters

• uuid –

• max_time – Maximum time in seconds to wait for all rasters to complete - defaults to
86400 (a day)

Returns

14 Chapter 4. Using the Client with the OpenET Raster API

CHAPTER

FIVE

RASTER TIMESERIES DATA

class openet_client.timeseries.RasterTimeSeries(raster_manager)

point_sample(longitude, latitude, start_date, end_date, interval='monthly', make_lookup=False, **params)
A general function to retrieve the timeseries data from OpenET for a specific coordinate and date range.
Uses the Raster API endpoint at raster/timeseries/point to retrieve data. This function retrieves the full
timeseries between the start and the end date, but convenience functions for retrieving a single value are
also available as single_month_point_sample or single_day_point_sample

This function accepts specified keyword arguments for the most common items to specify, but all other
parameters to the endpoint can be provided as additional keyword arguments to this function. You do
not need to include the keys for lon or lat - if provided - they will be set (or overwritten) by the values
provided in the keys longitude and latitude (note that this function uses the full words for longitude and
latitude though)

This function returns a list of dictionaries, as provided by the OpenET API. Each dictionary represents a
single observation/value and will have a key time, whose value indicates the timepoint of the observation.
The dictionaries will also have a second key for the variable returned (defaults to et) - see the OpenET API
documentation for options.

Parameters

• longitude – Longitude portion of the coordinate to retrieve data from, in decimal degrees.
See OpenET API documentation for any additional specifications for this item (param lon
to the OpenET API)

• latitude – Latitude portion of the coordinate to retrieve data from, in decimal degrees

• start_date – The date to start the sample. Can be a Python standard library date-
time.datetime object, an arrow.Arrow object or a string in “YYYY-MM-DD” format.

• end_date – The date to end the sample. Can be a Python standard library date-
time.datetime object, an arrow.Arrow object or a string in “YYYY-MM-DD” format.

• interval – The time step to use in the timeseries. The OpenET API documentation
doesn’t specify valid values here, but monthly: and :code:`daily are both known
allowed values When using the monthly timestep, the returned timeseries will use dates
for the first of every month within the timeseries. See return below for more details

• make_lookup – By default, the API returns a list of dictionaries that each have a key for
time and the variable requested (e.g. et). To find specific values in that list you would
need to search all objects. If, instead, you want to rely on a known structure of the time
values (e.g., that with monthly data, values will look like 2018-01-01 then 2018-02-01),
you canm set make_lookup to true. This flag changes the return type of the function into
a dictionary, where the keys are the dates and the values are the data in the variable field of
the original dictionaries (e.g. the et value).

15

https://open-et.github.io/docs/build/html/ras_timeseries.html#raster-timeseries-point
https://open-et.github.io/docs/build/html/ras_timeseries.html#raster-timeseries-point

OpenET Client, Release 0.1

For example, if their API returned the following data for a request, by default, this function
would return a similar Python representation of the data:

[
{

"time": "2018-01-01",
"et": 30

},
{

"time": "2018-02-01",
"et": 52

},
]

If make_lookup is set to True then this function will instead return the following dictio-
nary

{
"2018-01-01": 30,
"2018-02-01": 52,

}

• params – Additional keyword arguments that the OpenET API allows can be provided to
this function and they will be passed along to the API. Do not provide a keyword params to
this function. Instead, provide keyword arguments that match the OpenET API’s parameter
names

Returns
See make_lookup above for return behavior, which is dependent on the value of
make_lookup. Either a list of dictionaries (loaded from JSON) by default, or a dictionary
when make_lookup == True

single_day_point_sample(longitude, latitude, date, **params)
The point_sample function can return an arbitrary timeseries for a single point. This function instead
returns only the ET value specified, or other variable if an argument is provided for the API. Optional
additional parameters may sent to the same endpoint as keyword arguments to this function - the same as
other functions in this same timeseries module. Returns a single value for the day specified.

If you need to retrieve multiple values, you may stay within your OpenET API quotas better with well-
constructed use of the point_sample, but for scattered or small numbers of samples, this function may be
easier to use.

Parameters

• longitude – Longitude portion of the coordinate to retrieve data from, in decimal degrees.
See OpenET API documentation for any additional specifications for this item (param lon
to the OpenET API)

• latitude – Latitude portion of the coordinate to retrieve data from, in decimal degrees

• date – The day to obtain the sample for. The date may be a Python standard library date-
time.datetime object, an arrow.Arrow object or a string in “YYYY-MM-DD” format.

• params – Additional keyword arguments that the OpenET API allows can be provided to
this function and they will be passed along to the API. Do not provide a keyword params
to this function. Instead, provide keyword arguments that match the OpenET API’s pa-
rameter names. Note that in this function, you should not provide keyword arguments for

16 Chapter 5. Raster Timeseries Data

https://open-et.github.io/docs/build/html/ras_timeseries.html#raster-timeseries-point

OpenET Client, Release 0.1

interval, lat, lon, start_date, or end_date, as these values will be created automat-
ically by this function.

Returns
A single value (may be a string, check the type before using) for the variable of interest, in the
units returned by the API for the day specified. By default, the API will return values for ET,
from the ensemble model, in metric units. To change these parameters, pass the appropriate
additional keyword arguments for the API into this function.

single_month_point_sample(longitude, latitude, date, **params)
The point_sample function can return an arbitrary timeseries for a single point. This function instead
returns only the ET value specified, or other variable if an argument is provided for the API. Optional
additional parameters may sent to the same endpoint as keyword arguments to this function - the same as
other functions in this same timeseries module. Returns a single value for the month specified.

If you need to retrieve multiple values, you may stay within your OpenET API quotas better with well-
constructed use of the point_sample, but for scattered or small numbers of samples, this function may be
easier to use.

Parameters

• longitude – Longitude portion of the coordinate to retrieve data from, in decimal degrees.
See OpenET API documentation for any additional specifications for this item (param lon
to the OpenET API)

• latitude – Latitude portion of the coordinate to retrieve data from, in decimal degrees

• date – The month to obtain the sample for. The date may be a Python standard library
datetime.datetime object, an arrow.Arrow object or a string in “YYYY-MM-DD” format.

• params – Additional keyword arguments that the OpenET API allows can be provided to
this function and they will be passed along to the API. Do not provide a keyword params
to this function. Instead, provide keyword arguments that match the OpenET API’s pa-
rameter names. Note that in this function, you should not provide keyword arguments for
interval, lat, lon, start_date, or end_date, as these values will be created automat-
ically by this function.

Returns
A single value (may be a string, check the type before using) for the variable of interest, in
the units returned by the API for the month specified. By default, the API will return values
for ET, from the ensemble model, in metric units. To change these parameters, pass the
appropriate additional keyword arguments for the API into this function.

17

https://open-et.github.io/docs/build/html/ras_timeseries.html#raster-timeseries-point

OpenET Client, Release 0.1

18 Chapter 5. Raster Timeseries Data

CHAPTER

SIX

SENDING YOUR OWN REQUESTS TO THE API

6.1 Client Class and Methods

class openet_client.OpenETClient(token=None)

send_request(endpoint, method='get', disable_encoding=False, **kwargs)

Handles sending most requests to the API - they provide the endpoint and the args. Since the API
is in the process of switching from GET to POST requests, we have logic that switches between
those depending on the request method

Parameters

• endpoint – The text path to the OpenET endpoint - e.g. raster/export - skip the base URL.

• method – “get” or “post” (case sensitive) - should match what the API supports for the
endpoint

• kwargs – The arguments to send (via get or post) to the API

Returns
requests.Response object of the results.

19

OpenET Client, Release 0.1

20 Chapter 6. Sending Your Own Requests to the API

CHAPTER

SEVEN

THE DATA DOWNLOAD CACHE

21

OpenET Client, Release 0.1

22 Chapter 7. The Data Download Cache

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

23

OpenET Client, Release 0.1

24 Chapter 8. Indices and tables

PYTHON MODULE INDEX

o
openet_client.raster, 12

25

OpenET Client, Release 0.1

26 Python Module Index

INDEX

A
available_rasters (openet_client.raster.RasterManager

property), 13

C
check_statuses() (openet_client.raster.RasterManager

method), 13

D
download_available_rasters()

(openet_client.raster.RasterManager method),
13

download_file() (openet_client.raster.Raster method),
12

E
export() (openet_client.raster.RasterManager method),

13

F
feature_ids_list() (openet_client.Geodatabase

method), 8

G
Geodatabase (class in openet_client), 8
get_et_for_features() (openet_client.Geodatabase

method), 8
get_et_for_openet_feature_list()

(openet_client.Geodatabase method), 8
get_feature_ids() (openet_client.Geodatabase

method), 9

M
module

openet_client.raster, 12

O
openet_client.raster

module, 12
OpenETClient (class in openet_client), 19

P
point_sample() (openet_client.timeseries.RasterTimeSeries

method), 15

Q
queued_rasters (openet_client.raster.RasterManager

property), 14

R
Raster (class in openet_client.raster), 12
RasterManager (class in openet_client.raster), 13
RasterTimeSeries (class in openet_client.timeseries),

15

S
send_request() (openet_client.OpenETClient method),

19
single_day_point_sample()

(openet_client.timeseries.RasterTimeSeries
method), 16

single_month_point_sample()
(openet_client.timeseries.RasterTimeSeries
method), 17

W
wait_for_rasters() (openet_client.raster.RasterManager

method), 14

27

	Installation
	Getting Started
	Using the Client with the OpenET Geodatabase API
	Geodatabase API Access Class and Methods

	Using the Client with the OpenET Raster API
	Examples
	Batching it
	Doing work while you wait + manual control

	Raster API Class and Methods

	Raster Timeseries Data
	Sending Your Own Requests to the API
	Client Class and Methods

	The Data Download Cache
	Indices and tables
	Python Module Index
	Index

